5. Vectors
d. Dot Product
4. Angles
The reason the dot product is useful is that the geometric relationship \[ \vec u\cdot\vec v=|\vec u|\,|\vec v|\cos\theta \] allows us to find the angle between two vectors.
The angle, \(\theta\), between two non-zero vectors \(\vec u\) and \(\vec v\) satisfies: \[ \cos\theta=\dfrac{\vec u\cdot\vec v}{|\vec u|\,|\vec v|} \] Memorize this!
Find the angle between the two vectors \(\langle \sqrt{3},1\rangle\) and \(\langle 1,\sqrt{3}\rangle\).
From the formula, we have \[ \cos\theta =\dfrac{\langle \sqrt{3},1\rangle\cdot\langle 1,\sqrt{3}\rangle} {|\langle \sqrt{3},1\rangle|\,|\langle 1,\sqrt{3}\rangle|} =\dfrac{2\sqrt{3}}{2\cdot2}=\dfrac{\sqrt{3}}{2} \] Thus, \(\theta=30^\circ=\dfrac{\pi}{6}\,\text{rad}\).
Find the angle between the two vectors \(\vec a=\left\langle 2,2\right\rangle\) and \(\vec b=\left\langle 0,3\right\rangle\).
\(\theta=45^\circ=\dfrac{\pi}{4}\,\text{rad}\)
We compute: \[\begin{aligned} |\vec a|=\sqrt{4+4}=2\sqrt{2}& \qquad |\vec b|=\sqrt{0+9}=3 \\ \text{and} \quad \vec a\cdot\vec b&=0+6=6 \end{aligned}\] So: \[ \cos\theta=\dfrac{\vec a\cdot\vec b}{|\vec a|\,|\vec b|} =\dfrac{6}{2\sqrt{2}\cdot3}=\dfrac{1}{\sqrt{2}} \] Thus, \(\theta=45^\circ=\dfrac{\pi}{4}\,\text{rad}\).
Find the angle between the two vectors \(\vec p=\langle -\sqrt{3},1\rangle\) and \(\vec q=\langle 1,\sqrt{3}\rangle\).
\(\theta=90^\circ=\dfrac{\pi}{2}\,\text{rad}\) The vectors are perpendicular.
We compute: \[\begin{aligned} |\vec p|=\sqrt{3+1}=2& \qquad |\vec q|=\sqrt{1+3}=2 \\ \text{and} \quad \vec p\cdot\vec q&=-\sqrt{3}+\sqrt{3}=0 \end{aligned}\] So: \[ \cos\theta=\dfrac{\vec p\cdot\vec q}{|\vec p|\,|\vec q|}=0 \] Thus, \(\theta=90^\circ=\dfrac{\pi}{2}\,\text{rad}\). The vectors are perpendicular.
We do not actually need to compute \(|\vec p|\) and \(|\vec q|\). Since \(\vec p\ne\vec0\), \(\vec q\ne\vec0\) and \(\vec p\cdot\vec q=0\), we immediately know \(|\vec p|\) and \(|\vec q|\) are perpendicular.
You can also practice computing an angle of a triangle using vectors and dot products in 3D by using the following Maplet (requires Maple on the computer where this is executed):
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum